68 research outputs found

    Extreme Case of Spectral Band Difference Correction Between the OSIRIS-REX-NAVCAM2 and DSCOVR-EPIC Imagers

    Get PDF
    Earth-viewed images acquired during a recent asteroid intercept mission present a unique opportunity for radiometric calibration of visible imagers onboard a space exploration probe. Measurements from the CERES consistent DSCOVR-EPIC imager act as a reference in providing spatially, temporally, and angularly matched radiance values for deriving OSIRIS-REx-NavCam sensor calibration gains. The calibration is accomplished using an optimized all-sky tropical ocean ray-matching technique, which employs complex pixel remapping, navigation correction, and angular geometry consideration. Of critical consideration in this specific inter-calibration event is the extreme difference in spectral response function (SRF) width between the NavCam and EPIC imagers, which could cause a rather large bias. The NASA-LaRC SCIAMACHY based online spectral band adjustment factor (SBAF) calculation tool provides an empirical solution to such potential spectral-difference-induced biases through a high spectral- resolution hyper spectral convolution approach. The adjustments produced from this tool can effectively reduce the calibration gain bias of NavCam2 by nearly 6%, thereby adjusting the NavCam2 sensor to within 3.2% of its prelaunch calibration. These results highlight the capability of the SBAF tool to account for exceptionally disparate SRFs

    Cross-Calibration of AQUA-MODIS and NPP-VIIRS Reflective Solar Bands for a Seamless Record of CERES Cloud and Flux Properties

    Get PDF
    The CERES measured shortwave and longwave fluxes rely on the cloud properties derived using the coincident observations from the accompanying high-resolution MODIS and VIIRS imagers. The calibration consistency is required between MODIS and VIIRS radiances to ensure that the CERES provided cloud property retrievals are temporally consistent. This paper presents multiple approaches of cross-calibrating the spectrally comparable reflective solar bands (RSB) of Aqua-MODIS and NPP- VIIRS, and estimates the radiometric biases for individual band pair. The inter-comparison is performed between the Aqua-MODIS collection 6.1 level 1B and NPP-VIIRS Land PEATE V1 datasets. Radiometric biases up to 3% were estimated bet een the MODIS and VIIRS radiances for visible bands

    Enhancements to the Open Access Spectral Band Adjustment Factor Online Calculation Tool for Visible Channels

    Get PDF
    With close to 40 years of satellite observations, from which, cloud, land-use, and aerosol parameters can be measured, inter-consistent calibrations are needed to normalize retrievals across satellite records. Various visible-sensor inter-calibration techniques have been developed that utilize radiometrically stable Earth targets, e.g., deep convective clouds and desert/polar ice pseudo-invariant calibration sites. Other equally effective, direct techniques for intercalibration between satellite imagers are simultaneous nadir overpass comparisons and ray-matched radiance pairs. Combining independent calibration results from such varied techniques yields robust calibration coefficients, and is a form of self-validation. One potential source of significant error when cross-calibrating satellite sensors, however, are the often small but substantial spectral discrepancies between comparable bands, which must be accounted for. As such, visible calibration methods rely on a Spectral Band Adjustment Factor (SBAF) to account for the spectral-response function- induced radiance differences between analogous imagers. The SBAF is unique to each calibration method as it is a function of the Earth-reflected spectra. In recent years, NASA Langley pioneered the use of SCIAMACHY-, GOME-2-, and Hyperion-retrieved Earth spectra to compute SBAFs. By carefully selecting hyperspectral footprints that best represent the conditions inherent to an inter-calibration technique, the uncertainty in the SBAF is greatly reduced. NASA Langley initially provided the Global Space-based Inter-calibration System processing and research centers with online SBAF tools, with which users select conditions to best match their calibration criteria. This article highlights expanded SBAF tool capabilities for visible wavelengths, with emphasis on the use of the spectral range filtering for the purpose of separating scene conditions for the channel that the SBAF is needed based on the reflectance values of other bands. In other words, spectral filtering will enable better scene-type selection for bands where scene determination is difficult without information from other channels, which should prove valuable to users in the calibration community

    The Characterization of Deep Convective Cloud Albedo as a Calibration Target Using MODIS Reflectances

    Get PDF
    There are over 25 years of historical satellite data available to climate analysis. The historical satellite data needs to be well calibrated, especially in the visible, where there is no onboard calibration on operational satellites. The key to the vicarious calibration of historical satellites relies on invariant targets, such as the moon, Dome C, and deserts. Deep convective clouds (DCC) also show promise of being a stable invariant or predictable target viewable by all satellites, since they behave as solar diffusers. However DCC have not been well characterized for calibration. Ten years of well-calibrated MODIS is now available. DCC can easily be identified using IR thresholds, where the IR calibration can be traced to the onboard black-bodies. The natural variability of DCC albedo will be analyzed geographically and seasonally, especially difference of convection initiated over land or ocean. Functionality between particle size and ozone absorption with DCC albedo will be examined. Although DCC clouds are nearly Lambertion, the angular distribution of reflectances will be sampled and compared with theoretical models. Both Aqua and Terra MODIS DCC angular models will be compared for consistency. Normalizing angular geostationary DCC reflectances, which were calibrated against MODIS, with SCIAMACHY spectral reflectances and comparing them to MODIS DCC reflectances will inspect the usage of DCC albedos as an absolute calibration target

    A-Train Data Depot - Bringing Atmospheric Measurements Together

    Get PDF
    This paper describes the satellite data processing and services that constitute current functionalities of the A-Train Data Depot. We first provide a brief introduction to the original geometrical intricacies of the platforms and instruments of the A-Train constellation, and then proceed with description of our ATrain collocation processing algorithm that provides subsets that facilitate synergistic use of the various instruments. Finally, we present some sample image products from our web-based Giovanni tool which allows users to display, compare and download coregistered A-Train related data

    The Calibration of the DSCOVR EPIC Multiple Visible Channel Instrument Using MODIS and VIIRS as a Reference

    Get PDF
    The Deep Space Climate Observatory (DSCOVR), launched on 11 February 2015, is a satellite positioned near the Lagrange-1 (L1) point, carrying several instruments that monitor space weather, and Earth-view sensors designed for climate studies. The Earth Polychromatic Imaging Camera (EPIC) onboard DSCOVR continuously views the sun-illuminated portion of the Earth with spectral coverage in the UV, VIS, and NIR bands. Although the EPIC instrument does not have any onboard calibration abilities, its constant view of the sunlit Earth disk provides a unique opportunity for simultaneous viewing with several other satellite instruments. This arrangement allows the EPIC sensor to be inter-calibrated using other well-characterized satellite instrument reference standards. Two such instruments with onboard calibration are MODIS, flown on Aqua and Terra, and VIIRS, onboard Suomi-NPP. The MODIS and VIIRS reference calibrations will be transferred to the EPIC instrument using both all-sky ocean and deep convective clouds (DCC) ray-matched EPIC and MODIS/VIIRS radiance pairs. An automated navigation correction routine was developed to more accurately align the EPIC and MODIS/VIIRS granules. The automated navigation correction routine dramatically reduced the uncertainty of the resulting calibration gain based on the EPIC and MODIS/VIIRS radiance pairs. The SCIAMACHY-based spectral band adjustment factors (SBAF) applied to the MODIS/ VIIRS radiances were found to successfully adjust the reference radiances to the spectral response of the specific EPIC channel for over-lapping spectral channels. The SBAF was also found to be effective for the non-overlapping EPIC channel 10. Lastly, both ray-matching techniques found no discernable trends for EPIC channel 7 over the year of publically released EPIC data

    Issues in Data Fusion for Satellite Aerosol Measurements for Applications with GIOVANNI System at NASA GES DISC

    Get PDF
    We look at issues, barriers and approaches for Data Fusion of satellite aerosol data as available from the GES DISC GIOVANNI Web Service. Daily Global Maps of AOT from a single satellite sensor alone contain gaps that arise due to various sources (sun glint regions, clouds, orbital swath gaps at low latitudes, bright underlying surfaces etc.). The goal is to develop a fast, accurate and efficient method to improve the spatial coverage of the Daily AOT data to facilitate comparisons with Global Models. Data Fusion may be supplemented by Optimal Interpolation (OI) as needed

    Calibrating Historical IR Sensors Using GEO, and AVHRR Infrared Tropical Mean Calibration Models

    Get PDF
    Long-term, remote-sensing-based climate data records (CDRs) are highly dependent on having consistent, wellcalibrated satellite instrument measurements of the Earth's radiant energy. Therefore, by making historical satellite calibrations consistent with those of today's imagers, the Earth-observing community can benefit from a CDR that spans a minimum of 30 years. Most operational meteorological satellites rely on an onboard blackbody and space looks to provide on-orbit IR calibration, but neither target is traceable to absolute standards. The IR channels can also be affected by ice on the detector window, angle dependency of the scan mirror emissivity, stray-light, and detector-to-detector striping. Being able to quantify and correct such degradations would mean IR data from any satellite imager could contribute to a CDR. Recent efforts have focused on utilizing well-calibrated modern hyper-spectral sensors to intercalibrate concurrent operational IR imagers to a single reference. In order to consistently calibrate both historical and current IR imagers to the same reference, however, another strategy is needed. Large, well-characterized tropical-domain Earth targets have the potential of providing an Earth-view reference accuracy of within 0.5 K. To that effort, NASA Langley is developing an IR tropical mean calibration model in order to calibrate historical Advanced Very High Resolution Radiometer (AVHRR) instruments. Using Meteosat-9 (Met-9) as a reference, empirical models are built based on spatially/temporally binned Met-9 and AVHRR tropical IR brightness temperatures. By demonstrating the stability of the Met-9 tropical models, NOAA-18 AVHRR can be calibrated to Met-9 by matching the AVHRR monthly histogram averages with the Met-9 model. This method is validated with ray-matched AVHRR and Met-9 biasdifference time series. Establishing the validity of this empirical model will allow for the calibration of historical AVHRR sensors to within 0.5 K, and thereby establish a climate-quality IR data record

    Utilizing the Precessing Orbit of TRMM to Produce Hourly Corrections of Geostationary Infrared Imager Data with the VIRS Sensor

    Get PDF
    Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infrared-channel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration coefficients. Then VIRS is used as a diurnal calibration reference transfer to produce hourly corrections of GEOsat IR imager BT. For the 9 three-axis stabilized GEO imagers concurrent with VIRS, the midnight effect increased the BT on average by 0.5 K (11 microns) and 0.4 K (12 microns), with a peak at approx.01:00 local time. As expected, the spin-stabilized GEOsats revealed a smaller diurnal temperature cycle (mostly < 0.2 K) with inconsistent peak hours

    Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets

    Get PDF
    The latest CERES FM-5 instrument launched onboard the S-NPP spacecraft will use the VIIRS visible radiances from the NASA Land Product Evaluation and Analysis Tool Elements (PEATE) product for retrieving the cloud properties associated with its TOA flux measurement. In order for CERES to provide climate quality TOA flux datasets, the retrieved cloud properties must be consistent throughout the record, which is dependent on the calibration stability of the VIIRS imager. This paper assesses the NASA calibration stability of the VIIRS reflective solar bands using the Libya-4 desert and deep convective clouds (DCC). The invariant targets are first evaluated for temporal natural variability. It is found for visible (VIS) bands that DCC targets have half of the variability of Libya-4. For the shortwave infrared (SWIR) bands, the desert has less variability. The brief VIIRS record and target variability inhibits high confidence in identifying any trends that are less than 0.6yr for most VIS bands, and 2.5yr for SWIR bands. None of the observed invariant target reflective solar band trends exceeded these trend thresholds. Initial assessment results show that the VIIRS data have been consistently calibrated and that the VIIRS instrument stability is similar to or better than the MODIS instrument
    • …
    corecore